오뚝이개발자

ML Task별 output 양상과 activation function(활성화 함수) 본문

AI/AI 개념

ML Task별 output 양상과 activation function(활성화 함수)

땅어 2021. 10. 7. 16:20
728x90
300x250

 

 

ML로 해결하려는 task에서 기본적인 것은 분류, 회귀이다. 대부분의 task들은 사실 이 둘의 컴포넌트로 구분이 가능하다.(object detection과 같이 분류와 회귀가 섞인 task들도 있다.) 분류의 경우 이진분류(binary classification), 다중분류(multi-class classification)으로 나눌 수 있다. 그럼 각각에서 output layer의 양상은 어떠한지, 사용하는 activation function은 무엇인지 알아보자.

종류 output #(output layer의 unit 갯수) activation function
이진분류(binary classification) 1개 sigmoid
다중분류(multi-class classification) n개(class 갯수) softmax
회귀(regression) 1개 none

하나씩 살펴보자. 이진분류의 예로는 IMDB의 영화리뷰 데이터셋을 분류하는 문제를 들 수 있다. 해당 리뷰가 긍정인지 부정인지를 판별하는 것이 목표다. 그럼 output이 긍정/부정을 나타내기 위해 2개여야 할 것 같은데 왜 1개만 할까? 간단하다. 만약 동전 뒤집기 같이 2개의 case가 있는 상황에서 하나의 확률이 p라면 다른 하나의 확률은 1-p이기 때문이다.

회귀에선 왜 activation function을 사용하지 않을까? 이는 회귀의 정의를 살펴보면 된다. 회귀란 기본적으로 불연속적인 스칼라값을 예측하는 문제이다. 예컨대, 어떤 특정 지역의 여러 요소들을 기반으로 해당 지역의 집값을 예측하는 문제를 들 수 있다. 이 경우 집값에 대한 예측 결과값은 50000$과 같이 특정 값으로 나오기 때문에 활성화 함수를 별도로 사용하지 않아도 되는 것이다.

 

 

728x90
300x250
Comments