일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- 프로그래머스
- linux
- 코딩테스트
- 동적 프로그래밍
- nlp
- 알고리즘
- 구글 킥스타트
- 운영체제
- 프로그래밍
- AI
- DFS
- google coding competition
- 딥러닝
- 브루트포스
- 순열
- OS
- kick start
- CSS
- 리눅스
- PYTHON
- dp
- 동적프로그래밍
- 파이썬
- 백준
- 네트워크
- 코딩 테스트
- 그래프
- 코딩
- BFS
- 킥스타트
- Today
- Total
목록mnist (2)
오뚝이개발자

본 글은 밑바닥부터 시작하는 딥러닝 포스팅에 이어 핸즈온 머신러닝 2판(오렐리앙 제롱 지음) 책을 공부한 것을 요약한 것으로 밑바닥 딥러닝 책에 나오지 않는 개념들 위주로 정리한다. 나오지 않는 개념이나 기본적인 개념들을 밑바닥부터 시작하는 딥러닝에 포스팅하였으니 먼저 보고 오기를 추천한다. 이진 분류기 훈련 문제가 복잡할 때는 단순화해서 검증을 해보는 것이 유용하다. 예를 들어, MNIST 손글씨 분류 문제에서는 0~9까지 10개의 클래스에 대해 한 번에 검사하기 보단 '5-감지기'와 '5아님-감지기' 두 개의 클래스를 구분할 수 있는 이진 분류기(binary classifier)를 구현해 테스트 해보는 것이다. 성능측정 1. 교차 검증을 사용한 정확도 측정(k-fold cross validation)..

신경망이 퍼셉트론과 다른 점 퍼셉트론에선 가중치 매개변수의 값을 사람이 직접 입력해주었지만 신경망에선 학습을 통해 가중치 매개변수의 값을 데이터로부터 자동으로 학습 신경망의 구조 편향을 명시한 신경망 편향(bias)의 입력신호는 항상 1이다. 활성화 함수(activation function)의 등장 활성화 함수는 입력신호의 총합이 활성화를 일으키는지를 결정하며 퍼셉트론에서 신경망으로 가는 열쇠이다. 위의 그림과 아래의 그림을 비교해보면 다음층으로 가기전 입력신호의 총합이 h()라는 함수를 거쳐가는 것을 알 수 있다. 이것이 활성화 함수이다. 이를 수식으로 나타내보면 다음과 같다. (이 예시에서는 활성화함수를 step function이라 가정함.) 활성화 함수의 종류 1. 계단함수(step function..